

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code:DSD(18EC0402) Course & Branch: B.Tech - ECE

Year & Sem: II B.Tech & I Sem **Regulation:** R18

UNIT -I

	Essay Answer (10 mark) Questions	
1.	(a) Convert the given decimal number 234 to binary, octal, hexadecimal and BC	CD equivalent. [6M][L1][CO1]
2.	 (b) Given that (16)₁₀ = (100)_b, determine the value of b. (c) Given that (292)₁₀ = (1204)_b, determine the value of b. (a) Convert the following. 	[2M][L1][CO1] [2M][L1][CO1] [5M][L1][CO1]
	i) $(BC)_{16} = ()_{10}$ ii) $(2314)_8 = ()_{10}$ iii) $(1000011)_2 = ()_{10}$ iv) $(647)_{10}$ (b) Express the following numbers in decimal.	=() ₁₆ [3M][L1][CO1]
	i) (10110.0101) ₂ ii) (16.5) ₁₆ iii) (26.24) ₈	
	(c) Convert decimal 27.315 to binary.	[2M][L1][CO1]
3.	Perform the following	
	(a) Subtraction using 9's complement for the given.	[5M][L1][CO1]
	i) 54321 –41245 ii) 1231-4145 (b) Subtraction by using 1's complement for the given.	[5M][L1][CO1]
	i) 111011-110110 ii) 10001-10011	
4.	Perform the following	
	(a)Subtraction using 10's complement for the given. i) $3456 - 245$ ii) $1631-745$	[5M][L1][CO1]
	(b) Subtraction by using 2's complement for the given.i) 111001-1010 ii) 10011-10001	[5M][L1][CO1]
5.	(a) Perform the following using BCD arithmetic. i) $(79)_{10} + (177)_{10}$ ii) $(481)_{10} + (178)_{10}$	[5M][L1][CO1]
	(b) Convert the following to binary and then to gray code.	[5M][L1][CO1]
6.	i) (1111) ₁₆ ii) (BC54) ₁₆ iii) (237) ₈ iv) (164) ₁₀ v) (323) ₈ (a) Explain about the Binary Codes.	[5M][L1][CO1]
	(b) Simplify the following Boolean functions to minimum number of literals.	[5M][L1][CO1]
	i) F=xy+x'z+yz.ii) F=x'y'z+x'yz+xy'	
	iii) $F = (x+y)'(x'+y')$	
	iv) F=xy+xy'+x'y	
	v) F = (BC'+A'D)(AB'+CD')	
7.	(a) State and prove De Morgan's theorem.	[4M][L1][CO1]

i) F = AB + A (B + C) + B' (B + D)ii) F=A+B+A'B'C

(b) State and prove Duality theorem.

(c) State the distributive law.

iii)F=A'B+A'BC'+A'BCD+A'BC'D'E

8. (a) Obtain the Dual and complement to the following Boolean expressions.

[4M][L1][CO1]

[2M][L1][CO1]

[8M][L1][CO1]

iv) F= ABEF+ABE'F'+A'B'EF

(b) Give the truth table of XNOR logic gates.

[2M][L1][CO1]

- 9. (i) Express the Boolean function F= A+B'C as a sum of minterms.
- [5M][L1][CO1]
- (ii) Express the Boolean function F= XY+X'Z as a product of maxterm.

[5M][L1][CO1]

10. (a)Express the following function as a sum of minterms and as a product of maxterms

F(A,B,C,D) = B'D+A'D+BD.

[5M][L1][CO1]

(b)Obtain the truth table of the following Boolean function and express the function as sum of minterms and product of maxterms F = (A+B) (B+C). [5M][L1][CO1]

Digital System Design

<u>UNIT -II</u> <u>Essay (10 mark) Questions</u>

1. a) Minimize the following Boolean function using K-map	
$F(A, B, C, D) = \Sigma m(1,4,5,6,12,13,14,15).$	[2M][L1][CO3]
b) Obtain the simplified expression using K-map for the following Boolean fu	inction
$F(A, B, C, D, E) = \sum (0,1,4,5,16,17,21,25,29).$	[3M][L1][CO3]
c) Simplify $F(A,B,C,D) = \sum (4,5,6,7,12,13,14) + d(1,9,11,15)$ using K-map.	[5M][L1][CO3]
2. Simplify the following Boolean function for minimal SOP & POS form usin	g K-map
i) F (A, B, C, D) = Σ (0,1,2,5,8,9,10)	
ii) F (A, B, C, D) = $\pi(1,3,5,7,12,13,14,15)$.	[10M][L2][CO3]
3. Obtain (i) Sum of products form and (ii) Product of sums form for	
F=x'z'+y'z'+yz'+xy	[10M][L2][CO3]
4. Minimize the given Boolean function, F (A, B,C,D) = Σ m(0,1,2,3,6,7,13,15)	using Tabulation
method and implement it using basic gates.	[10M][L2][CO3]
5. (a)Write the design procedure for combinational circuit.	[5M][L3][CO4]
(b) Design & implement the Full Adder.	[5M][L3][CO4]
6. (a) Design & implement 4-bit Adder/subtractor.	[4M][L3][CO4]
(b) Explain about carry look ahead adder with suitable diagram.	[6M]L1][CO4]
7. (a) Construct a BCD adder circuit.	[3M][L3][CO4]
(b) With a neat design procedure, explain the implementation of a 4-bit Magn	nitude Comparator.
	[7M][L3][CO4]
8. (a) Define Decoder. Design & implement a 3 to 8 line Decoder.	[5M][L3][CO4]
(b) Design & implement a Full Adder using Decoder and two OR gates.	[5M][L3][CO4]
9. (a) What is Encoder? Design an octal to binary Encoder.	[5M][L3][CO4]
(b) Design &Implement the 8:1 Multiplexer.	[5M][L3][CO4]
10. (a) Implement the following Boolean function using 4:1 Multiplexer.	
$F(A, B, C) = \sum (1,2,6,7).$	[5M][L3][CO4]
(b) Design a 1:4 Demultiplexer and mention the applications of a DEMUX.	[5M][L1][CO4]

<u>UNIT –III</u> <u>Essay (10 mark) Questions</u>

1.	(a) Draw the logic diagram of a JK – flip flop and explain its operation.	[5M][L4][CO3]
	(b) What is the need for Master Slave JK FF and explain its operation with near	t diagrams.
		[5M][L2][CO3]
2.	(a) Explain the operation of an SR Flip Flop using excitation table. Give its Tru	th Table and
	Characteristic Equation	[5M][L2][CO3]
	(b) Give the characteristic table, Truth table, characteristic equation and excitat	ion table for T and
	D FF.	[5M][L2][CO3]
3.	(a)Implement D-FF using JK FF with its truth table.	[5M][L4][CO3]
	(b)Draw the basic flip flop circuit with NOR gates. Explain its operation	[5M][L2][CO3]
4.	(a)Compare Synchronous and Ripple counters.	[3M][L2][CO2]
	(b) Design and implement Mod-10 Synchronous Up counter using T-FFs	[7M][L4][CO3]
5.	(a)Design MOD -6 Ripple Down counter	[5M][L4][CO3
	(b)Draw and explain a 4-bit Serial in Serial out (SISO) Shift Register.	[5M][L4][CO3].
6.		[10M][L6][CO3]
7.	(a) Explain the difference between Ring and Johnson counters with neat sketch	. [5M][L4][CO3]
	(b) Design a 4-bit synchronous up counter using JK flip flops.	[5M][L2][CO4]
8.	(a) Design a Positive edge triggered Master-Slave D flip flop	[4M][L2][CO3]
	(b) Design and implement a BCD Ripple counter using JK Flip Flops.	[6M][L3][CO3]
9.	(a)Design a 4-bit binary ripple down – counter using a negative edge triggered	T – Flip Flops.
		[5M][L3][CO3]
	(b)Explain the operation of Pseudo Random Binary Sequence Generator with	a neat diagram.
		[5M][L2][CO3]
10.	Explain the principle of clock generation with neat diagram	[10M][L4][CO3]

Digital System Design Page 4

[5M][L2][CO4]

[5M][L2][CO4]

UNIT -IV Essay (10 mark) Questions

1. (a)Perform the analysis of standard DTL NAND gate and give its characteristics [5M][L4][CO3] (b) Give the classification of integrated circuits and compare the various logic families. [5M][L2][CO2] 2. (a) What is meant by Tristate logic? Draw the circuit of Tristate TTL logic and explain the functions. [6M][L4][CO4] (b)Explain the fallowing specifications [4M][L2][CO2] (i) Fan out (ii)Noise margin 3. (a).Briefly Explain about ECL. [5M][L2][CO2] (b)Compare between Different CMOS Logic families. [5M][L1][CO2] 4. (a)Explain about TTL to CMOS interfacing [5M][L4][CO2] (b)Compare between TTL, ECL and CMOS [5M][L1][CO2] 5. Design a BCD to excess 3 code converter using suitable PLA [10M][L4][CO4] 6. Implement the following functions using a PLA ` [10M][L4][CO3] (i)f1(w,x,y)= $\sum m(3,5,6,7)$ ii) $f2(w,x,y)=\sum m(0,2,4,7)$ 7. Generate the following Boolean function with PAL with 4 inputs and 4 outputs [10M][L6][CO3] (i)Y3 = a'bc'd+a'bcd'+abc'd(ii)Y2=a'bcd'+a'bcd+abcd (iii)Y1=a'bc'+a'bc+ab'c+abc' (iv)Y0=abcd8. 8. (a)Derive the PLA programming table for the combinational circuit that squares a 3-bit number. [5M][L2][CO4] (b) Compare three combinational circuits PLA, PAL and ROM. [5M][L1][CO4] 9. (a)Explain the architecture of PLA [5M][L2][CO2] (b)Briefly introduce the content addressable memory. [5M][L1][CO2] 10. Implement the following Boolean function using PAL. [10M][L6][CO3] (i)F1 (w,x,y,z) = Σ m(0,1,2,3,7,9,11) (ii)F2 (w,x,y,z) = Σ m(0,1,2,3,10,12,14) (iii)F3 (w,x,y,z) = Σ m(0,1,2,3,10,13,15

(iv)F4 (w,x,y,z) = Σ m(4,5,6,7,9,15)

11. (a) Explain the 4X4 ROM construction with neat diagram.

(b). Implement NOT, NAND and NOR operation using CMOS logic

UNIT -V Essay (10 mark) Questions

1)	a)	Explain	various	data	objects	in	VHDL.	Give	necessary	exam	ples.

1) a) Explain various data objects in VHDL. Give necessary examples.	
	[5M] [L2] [CO5]
(b) Explain the structure of a VHDL program.	[5M] [L2] [CO5]
2) Explain in detail different modeling styles of VHDL with suitable examples.	[10M] [L2] [CO5]
3) Draw and explain in detail the VHDL design flow.	[10M] [L2] [CO5]
4) a) Explain the importance of Schematic in VHDL.	[5M] [L1] [CO5]
b) Explain about Data Types in VHDL.	[5M] [L2] [CO5]
5) a) Write a VHDL program for a 4X1 MUX.	[5M] [L4] [CO5]
b) Discuss in detail about Data Flow design elements.	[5M] [L4] [CO5]
6) a) Design a logic circuit and write a VHDL program to add 3 bit numbers.	[5M] [L5] [CO5]
b) Explain about Simulation and Synthesis processes in VHDL.	[5M] [L2] [CO5]
7) Design the logic circuit and write a data-flow style VHDL program for the	following function.
$F(A,B,C,D) = \sum (1,5,6,7,9,13) + d(4,15).$	[10M] [L5] [CO5]
8) a) Write about structural design elements with VHDL code.	[5M] [L1] [CO5]
b) Write a VHDL entity and Architecture for the following function. $F(x) = 0$	(a+b) (c d).
Also draw the relevant logic diagram.	[5M] [L5] [CO5]

9) a) Write a VHDL program for a 2 bit Magnitude Comparator using Data Flow model.

[5M] [L5] [CO5]

b) Write a VHDL program for a D and T FF. [5M] [L5] [CO5] 10) a) Write a VHDL program for Full adder. [5M] [L5] [CO5] b) Write a VHDL program for 3 to 8 Decoder. [5M] [L5] [CO5]

Digital System Design

UNIT-I Short (2 mark) Questions

- 1. Converting the following to octal: $(4243)_{16}$. (ii) $(125)_{10}$.
- 2. Express the given number (M=01000100) using 1's complement?
- 3. What is the need for taking complement?
- 4. Perform X-Y using 1's complement of the given binary numbers X = 1010100 and Y = 1000011.
- 5. Find 10's complement of given decimal numbers X = 52324 and Y = 2421.
- 6. Why XS-3 code is called a self-complementing code?
- 7. What are the signed binary number systems?
- 8. What are the different classifications of binary codes?
- 9. State about error correcting codes?
- 10. What is meant by parity bit?
- 11. Define Demorgan's theorem.
- 12. Write the truth table for F=(A+B)(C+D)
- 13. State the associative law and commutative law.
- 14. State De Morgan's theorem and Duality.
- 15. Simplify the following expression Y = (A + B)(A' + C')(B' + C')
- 16. Show that (X + Y' + XY)(X + Y')(X'Y) = 0
- 17. Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC
- 18. Define Canonical SOP & Canonical POS.
- 19. Define binary logic?
- 20. Define logic gates?

UNIT-II Short (2 mark) Questions

- 1. Simplify the given Boolean function $F(X,Y,Z) = \sum (1,2,3,6,7)$.
- 2. Define Minterm and Maxterm.
- 3. Find the minterms of the given Boolean expressions $F=C^1D+ABC^1+ABD^1+A^1B^1D$.
- **4.** Define Prime Implicant and Essential Prime Implicant.
- **5.** Draw a 5 variable k-map.
- 6. Give the steps involved in analysis procedure for a combinational circuit.
- 7. Draw a Half Adder circuit and mention its truth table.
- **8.** Draw a Half Subtractor circuit and mention its truth table.
- 9. Implement a Full Adder using Half Adders.
- 10. Mention the expressions for difference and borrow of Full Subtractor.
- 11. Draw the diagram of a 4 bit Binary Adder.
- 12. Draw the circuit of two bit by two bit binary multiplier.
- 13. Draw the 4*16 Decoder circuit using two 3x8 Decoders.
- 14. Define encoder and decoder.
- 15. Write the truth table of priority encoder.
- **16.** List the applications of Encoder and Decoder.
- 17. Design a 2:1 Multiplexer.
- 18. Define Mux and Demux.
- 19. List the applications of MUX and DEMUX.
- 20. Define Carry Look Ahead Adder.

UNIT-III Short (2 mark) Questions

- 1. Write the difference between Latch and Flip flop
- 2. Briefly explain about D-FF
- 3. Draw the block diagram of sequential circuit using combinational circuit and memory unit
- 4. Draw the logic circuit of flip-flop and truth table using NAND gates
- 5. Give the comparison between combinational circuits and sequential circuits
- 6. What is shift register? Give the classification of them?
- 7. Draw the circuit of ring counter.
- 8. What is the operation of SR flip-flop?
- 9. What are the different types of flip-flop?
- 10. Define Flip flop. What are the applications of FF
- 11. What is the operation of JK flip-flop?
- 12. Draw the PIPO shift register
- 13. What is edge-triggered flip-flop?
- 14. What are different types of counter
- 15. Explain the flip-flop excitation tables for JK flip-flop
- 16. Draw the MOD-2 Counter.
- 17. Draw the SIPO shift register
- 18. Give the comparison between synchronous & Asynchronous counters.
- 19. What is a master-slave flip-flop?
- 20. What are the classifications of sequential circuits?

UNIT-IV Short (2 mark) Questions

- 1. Define Fan-in, Fan-out.
- 2. Draw the symbol of NMOS and PMOS transistor.
- 3. Define noise margin.
- 4. Draw CMOS AND gate.
- 5. What are the advantages of flash memory?
- 6. Draw the DTL OR gate..
- 7. What is the concept of ROM?
- 8. What are the advantages of PLDs.
- 9. List different PLDs.
- 10. Draw CMOS OR gate
- 11. Draw the structure of PAL.
- 12. What is meant by Tristate TTL
- 13. Compare PAL, PLA & PROM.
- 14. Realize $F(x,y,z) = \Sigma m(1,2,5,7)$ using PLA.
- 15. Realize $F(x,y,z) = \sum m(1,2,3,6)$ using PAL
- 16. How does the PLDs differ from fixed logic devices?
- 17. Find the number of address lines to access 4KB ROM.
- 18. What is static memory?
- 19. List the differences between static & dynamic memories.

UNIT-V Short (2 mark) Questions

- 1. List the different objects of VHDL.
- 2. Define FSM.
- 3. What is the need of HDL?
- 4. Give the difference between Signal and Variable.
- 5. Give any two differences between different modeling styles of VHDL.
- 6. Define Data flow model.
- 7. Define Structural model.
- 8. Define Behavioral model.
- 9. State the basic statement used in behavioral Modelling.
- 10. Define Process and Sequential Statements with example.
- 11. Write an entity declaration for 1x8 De-Mux.
- 12. Write a VHDL Program for 1x4 DEMUX in Dataflow Model.
- 13. Write a VHDL Program for Half adder in Structural Model.
- 14. Write a VHDL Program for Full adder in Behavioral Model.
- 15. Write a VHDL Program for 1x8 De-MUX in Structural Model.
- 16. Write a VHDL Program for Half Subtractor in Dataflow Model.
- 17. Write a VHDL Program for Full Subtractor in Structural Model.
- 18. Write a VHDL Program for 2x4 Decoder in Dataflow Model.
- 19. Write a VHDL Program for 4x2 Encoder in Structural Model.
- 20. Write an Entity Declaration for 4x8 Decoder in Structural Model.

	QUESTION BANK	2019
Digital System Design		Page 12